Hybrid Quantum Mechanics/Molecular Mechanics Schemes
MoBioChem
Hybrid Quantum Mechanics/Molecular Mechanics Schemes
1:32:10
Coarse-Grained Models
MoBioChem
Coarse-Grained Models
1:33:40
Machine-Learning Potentials
MoBioChem
Machine-Learning Potentials
1:38:41
Free-Energy Methods
MoBioChem
Free-Energy Methods
1:45:10
Cheminformatics and Machine Learning in Drug Discovery
MoBioChem
Cheminformatics and Machine Learning in Drug Discovery
1:38:20
Molecular Dynamics and Enhanced Sampling
MoBioChem
Molecular Dynamics and Enhanced Sampling
1:53:15
Virtual reality for molecular simulation and design: from quantum chemistry to drug binding
MoBioChem
Virtual reality for molecular simulation and design: from quantum chemistry to drug binding
3:02:01
Retrato de la Mujer en Ciencia
MoBioChem
Retrato de la Mujer en Ciencia
0:31
Understanding Recognition, Reactivity, and Regulation from Molecular Simulations
MoBioChem
Understanding Recognition, Reactivity, and Regulation from Molecular Simulations
1:34:15
International Day of Women and Girls in Science 2025. Petra Imhof, Featured Scientist by TCCM
MoBioChem
International Day of Women and Girls in Science 2025. Petra Imhof, Featured Scientist by TCCM
7:27
PhotoSim: AI Power, Quantum Accuracy
MoBioChem
PhotoSim: AI Power, Quantum Accuracy
6:02
Hole Delocalization and Redox Potentials in Nucleobases and DNA strands
MoBioChem
Hole Delocalization and Redox Potentials in Nucleobases and DNA strands
25:31
The protein environment restricts the intramolecular charge transfer of luciferine/luciferase
MoBioChem
The protein environment restricts the intramolecular charge transfer of luciferine/luciferase
21:06
Automatic Characterization of Drug/Amino Acid Interactions by Energy Decomposition Analysis
MoBioChem
Automatic Characterization of Drug/Amino Acid Interactions by Energy Decomposition Analysis
13:55
Jesús Lucia-Tamudo PhD Defense
MoBioChem
Jesús Lucia-Tamudo PhD Defense
2:05:00
Molecular Dynamics - chapter 5: From Jacobi-Hamilton to Lagrangian Frame
MoBioChem
Molecular Dynamics - chapter 5: From Jacobi-Hamilton to Lagrangian Frame
13:54
An Efficient Multilayer Approach to Model DNA-Based Nanobiosensors
MoBioChem
An Efficient Multilayer Approach to Model DNA-Based Nanobiosensors
21:42
Coarse Grain. Manuel Melo
MoBioChem
Coarse Grain. Manuel Melo
2:02:57
Igor Schapiro, Hebrew University of Jerusalem. QM/MM for Excited States. Computer Exercise.
MoBioChem
Igor Schapiro, Hebrew University of Jerusalem. QM/MM for Excited States. Computer Exercise.
1:42:00
Elise Dumont, École Normale Supérieure de Lyon. QM/MM for the Ground State. Computer Exercise
MoBioChem
Elise Dumont, École Normale Supérieure de Lyon. QM/MM for the Ground State. Computer Exercise
1:43:55
Igor Schapiro, Hebrew University of Jerusalem. QM/MM for Excited States
MoBioChem
Igor Schapiro, Hebrew University of Jerusalem. QM/MM for Excited States
1:53:11
Elise Dumont, École Normale Supérieure de Lyon. QM/MM for the Ground State.
MoBioChem
Elise Dumont, École Normale Supérieure de Lyon. QM/MM for the Ground State.
1:57:06
Jesús González Vázquez, Universidad Autónoma de Madrid. Surface Hopping. Computer Exercise.
MoBioChem
Jesús González Vázquez, Universidad Autónoma de Madrid. Surface Hopping. Computer Exercise.
1:14:50
Manuel Melo, University of Lisbon. Coarse Grain. Computer Exercise.
MoBioChem
Manuel Melo, University of Lisbon. Coarse Grain. Computer Exercise.
1:45:50
Jesús González Vázquez, Universidad Autónoma de Madrid. Surface Hopping
MoBioChem
Jesús González Vázquez, Universidad Autónoma de Madrid. Surface Hopping
1:49:00
Marcos Mandado Alonso, Universidad de Vigo. Energy Decomposition Analysis. Computer Exercise.
MoBioChem
Marcos Mandado Alonso, Universidad de Vigo. Energy Decomposition Analysis. Computer Exercise.
1:34:25
Pedro Sánchez Murcia, Medical University of Graz. Classical Molecular Dynamics. Computer Exercise.
MoBioChem
Pedro Sánchez Murcia, Medical University of Graz. Classical Molecular Dynamics. Computer Exercise.
2:12:31
Marcos Mandado Alonso, Universidad de Vigo. Energy Decomposition Analysis.
MoBioChem
Marcos Mandado Alonso, Universidad de Vigo. Energy Decomposition Analysis.
2:11:20
Pedro Sánchez Murcia, Medical University of Graz. Classical Molecular Dynamics
MoBioChem
Pedro Sánchez Murcia, Medical University of Graz. Classical Molecular Dynamics
1:51:26
Cristina Sanz Sanz, Universidad Autónoma de Madrid. Quantum Dynamics. Computer Exercise.
MoBioChem
Cristina Sanz Sanz, Universidad Autónoma de Madrid. Quantum Dynamics. Computer Exercise.
1:56:11
Basile Curchod, University of Briston. Multiple Spawning. Computer Exercise
MoBioChem
Basile Curchod, University of Briston. Multiple Spawning. Computer Exercise
1:57:00
Cristina Sanz Sanz, Universidad Autónoma de Madrid. Quantum Dynamics
MoBioChem
Cristina Sanz Sanz, Universidad Autónoma de Madrid. Quantum Dynamics
2:07:45
Basile Curchod, University of Briston. Multiple Spawning
MoBioChem
Basile Curchod, University of Briston. Multiple Spawning
1:56:40
Emilio Martínez-Núñez, Universidad de Santiago de Compostela. Automatic Reaction Search. Comp Exer
MoBioChem
Emilio Martínez-Núñez, Universidad de Santiago de Compostela. Automatic Reaction Search. Comp Exer
1:40:31
Felix Plasser, Loughborough University. Wavefunction Analysis. Computer Exercise
MoBioChem
Felix Plasser, Loughborough University. Wavefunction Analysis. Computer Exercise
1:58:51
Emilio Martínez-Núñez, Universidad de Santiago de Compostela. Automatic Reaction Search.
MoBioChem
Emilio Martínez-Núñez, Universidad de Santiago de Compostela. Automatic Reaction Search.
1:53:06
Felix Plasser, Loughborough University. Wavefunction Analysis
MoBioChem
Felix Plasser, Loughborough University. Wavefunction Analysis
2:11:41
Mobiochem: The Research Battle
MoBioChem
Mobiochem: The Research Battle
3:06
Computation of Oxidation Potentials of Solvated Nucleobases
MoBioChem
Computation of Oxidation Potentials of Solvated Nucleobases
19:59
Computer Exercise:  QM/MM MD and Umbrella Sampling
MoBioChem
Computer Exercise: QM/MM MD and Umbrella Sampling
1:46:21
Enhanced Sampling Methods - Chapter 4: Metadynamics
MoBioChem
Enhanced Sampling Methods - Chapter 4: Metadynamics
8:46
Gustavo Cárdenas PhD Defense
MoBioChem
Gustavo Cárdenas PhD Defense
2:50:30
Day 8 - Computer Exercise: Computation of Absorption Spectra
MoBioChem
Day 8 - Computer Exercise: Computation of Absorption Spectra
2:12:55
Day 7 - Computer Exercise: Computation of Redox Potentials
MoBioChem
Day 7 - Computer Exercise: Computation of Redox Potentials
3:14:38
Day 6 - Computer Exercise: Umbrella Sampling
MoBioChem
Day 6 - Computer Exercise: Umbrella Sampling
2:23:05
Day 5 - Computer Exercise: Classical Molecular Dynamics
MoBioChem
Day 5 - Computer Exercise: Classical Molecular Dynamics
2:47:25
Day 4 - Theory: QM/MM and Research Examples
MoBioChem
Day 4 - Theory: QM/MM and Research Examples
2:49:40
MoBioChem Women in Science 2022
MoBioChem
MoBioChem Women in Science 2022
6:06
Day 3 - Umbrella Sampling and Replica Exchange
MoBioChem
Day 3 - Umbrella Sampling and Replica Exchange
3:01:56
Day 2 - Theory: Periodic Boundary Conditions. Introduction to Enhanced-Sampling Approaches.
MoBioChem
Day 2 - Theory: Periodic Boundary Conditions. Introduction to Enhanced-Sampling Approaches.
3:07:00
Day 1 - Theory: Equations of Motion and Force Fields
MoBioChem
Day 1 - Theory: Equations of Motion and Force Fields
2:45:35
Cosolvent and Dynamic Effects in Binding Pocket Search by Docking Simulations
MoBioChem
Cosolvent and Dynamic Effects in Binding Pocket Search by Docking Simulations
15:36
Descubriendo la Naturaleza con Modelización Computacional
MoBioChem
Descubriendo la Naturaleza con Modelización Computacional
1:05:26
QM/MM Energy Decomposition Analysis in Biological Systems: the Cisplatin/DOPC Case
MoBioChem
QM/MM Energy Decomposition Analysis in Biological Systems: the Cisplatin/DOPC Case
24:30
Enhanced Sampling Methods - chapter 3: Replica Exchange Molecular Dynamics
MoBioChem
Enhanced Sampling Methods - chapter 3: Replica Exchange Molecular Dynamics
36:00
Statistical Thermodynamics. Chapter 1: The Boltzmann Distribution.
MoBioChem
Statistical Thermodynamics. Chapter 1: The Boltzmann Distribution.
23:22
The Permeation Mechanism of Cisplatin through a Dioleoylphosphocholine Bilayer
MoBioChem
The Permeation Mechanism of Cisplatin through a Dioleoylphosphocholine Bilayer
14:42
Binding of Azobenzene and p-Diaminoazobenzene to the Human Voltage-Gated Sodium Channel Nav1.4
MoBioChem
Binding of Azobenzene and p-Diaminoazobenzene to the Human Voltage-Gated Sodium Channel Nav1.4
20:37
Emisión en directo de MoBioChem
MoBioChem
Emisión en directo de MoBioChem
QM/MM - chapter 1: Partition Schemes and Pitfalls
MoBioChem
QM/MM - chapter 1: Partition Schemes and Pitfalls
37:27
Automatic Correction of the Active Space in CASSCF and CASPT2 Calculations for Sampled Geometries
MoBioChem
Automatic Correction of the Active Space in CASSCF and CASPT2 Calculations for Sampled Geometries
20:41
Molecular Dynamics - chapter 4: From Quantum Dynamics to Classical Dynamics
MoBioChem
Molecular Dynamics - chapter 4: From Quantum Dynamics to Classical Dynamics
33:05
Enhanced Sampling Methods - Chapter 2: Umbrella Sampling
MoBioChem
Enhanced Sampling Methods - Chapter 2: Umbrella Sampling
21:15
Enhanced Sampling Methods - chapter 1: Free Energy and Sampling
MoBioChem
Enhanced Sampling Methods - chapter 1: Free Energy and Sampling
17:54
Molecular Dynamics - chapter 3: Periodic Boundary Conditions, Temperature and Pressure
MoBioChem
Molecular Dynamics - chapter 3: Periodic Boundary Conditions, Temperature and Pressure
31:32
Molecular Dynamics - chapter 2: Force Fields
MoBioChem
Molecular Dynamics - chapter 2: Force Fields
28:43
Molecular Dynamics - chapter 1: Equations of Motion
MoBioChem
Molecular Dynamics - chapter 1: Equations of Motion
19:49