5 Message Passing Neural Networks
Marc Deisenroth
5 Message Passing Neural Networks
25:09
4 some extensions
Marc Deisenroth
4 some extensions
17:42
Iterative State Estimation in Non-linear Dynamical Systems Using Approximate Expectation Propagation
Marc Deisenroth
Iterative State Estimation in Non-linear Dynamical Systems Using Approximate Expectation Propagation
3:09
Jackie Kay: Fairness for Unobserved Characteristics
Marc Deisenroth
Jackie Kay: Fairness for Unobserved Characteristics
40:48
Inference in Time Series
Marc Deisenroth
Inference in Time Series
27:20
Numerical Integration
Marc Deisenroth
Numerical Integration
18:28
Gaussian Processes - Part 2
Marc Deisenroth
Gaussian Processes - Part 2
1:20:19
Bayesian Optimization
Marc Deisenroth
Bayesian Optimization
1:22:28
Gaussian Processes - Part 1
Marc Deisenroth
Gaussian Processes - Part 1
1:12:48
Monte Carlo Integration
Marc Deisenroth
Monte Carlo Integration
6:49
Normalizing Flows
Marc Deisenroth
Normalizing Flows
8:26
Introduction to Integration in Machine Learning
Marc Deisenroth
Introduction to Integration in Machine Learning
2:10
12 Stochastic Gradient Estimators
Marc Deisenroth
12 Stochastic Gradient Estimators
13:51
05 Normalizing flows
Marc Deisenroth
05 Normalizing flows
8:36
06 Inference in Time Series
Marc Deisenroth
06 Inference in Time Series
27:31
04 Monte Carlo Integration
Marc Deisenroth
04 Monte Carlo Integration
6:59
03 Numerical Integration
Marc Deisenroth
03 Numerical Integration
18:48
02 Introduction to Integration
Marc Deisenroth
02 Introduction to Integration
2:10
01 Welcome
Marc Deisenroth
01 Welcome
1:22
Bayesian Optimization (backup)
Marc Deisenroth
Bayesian Optimization (backup)
1:22:11
Marc Deisenroth Live Stream
Marc Deisenroth
Marc Deisenroth Live Stream
Inner products (video 3): Definition
Marc Deisenroth
Inner products (video 3): Definition
5:03
Inner Products (video 2): Dot Product
Marc Deisenroth
Inner Products (video 2): Dot Product
4:44
Projections (video 1): Motivation
Marc Deisenroth
Projections (video 1): Motivation
0:41
Statistics (video 7): Outro
Marc Deisenroth
Statistics (video 7): Outro
0:28
Introduction to the Course
Marc Deisenroth
Introduction to the Course
3:48
Inner products (video 8): Outro
Marc Deisenroth
Inner products (video 8): Outro
0:36
Statistics (video 5): Linear Transformations, Part 1/2
Marc Deisenroth
Statistics (video 5): Linear Transformations, Part 1/2
4:46
PCA (video 8): Other Perspectives of PCA
Marc Deisenroth
PCA (video 8): Other Perspectives of PCA
7:43
Statistics (video 1) - Statistics of Datasets
Marc Deisenroth
Statistics (video 1) - Statistics of Datasets
0:42
Statistics (video 4): Variances, Part 2/2
Marc Deisenroth
Statistics (video 4): Variances, Part 2/2
5:17
Introduction to the Course
Marc Deisenroth
Introduction to the Course
3:48
Inner Products (video 5): Lengths and Distances, Part 2/2
Marc Deisenroth
Inner Products (video 5): Lengths and Distances, Part 2/2
3:43
Projections (video 3): Example 1D Projection
Marc Deisenroth
Projections (video 3): Example 1D Projection
3:27
Inner Products (video 1): Motivation
Marc Deisenroth
Inner Products (video 1): Motivation
1:48
Statistics (video 6): Linear Transformations, Part 2/2
Marc Deisenroth
Statistics (video 6): Linear Transformations, Part 2/2
3:31
Inner Products (video 4): Lengths and Distances, Part 1/2
Marc Deisenroth
Inner Products (video 4): Lengths and Distances, Part 1/2
7:08
Outro Course
Marc Deisenroth
Outro Course
0:57
Projections (video 5): Example N-dimensional Projections
Marc Deisenroth
Projections (video 5): Example N-dimensional Projections
3:53
PCA (video 4): Reformulation of the Loss Function
Marc Deisenroth
PCA (video 4): Reformulation of the Loss Function
10:26
PCA (video 9): Outro
Marc Deisenroth
PCA (video 9): Outro
0:43
PCA (video 5):  Optimization of the Basis Vectors
Marc Deisenroth
PCA (video 5): Optimization of the Basis Vectors
7:40
Projections (video 4): N-dimensional projections
Marc Deisenroth
Projections (video 4): N-dimensional projections
8:34
Statistics (video 2): Means
Marc Deisenroth
Statistics (video 2): Means
4:01
Inner Products (video 7): Unconventional Inner Products
Marc Deisenroth
Inner Products (video 7): Unconventional Inner Products
7:23
Projections (video 2): Projection onto 1D Subspaces
Marc Deisenroth
Projections (video 2): Projection onto 1D Subspaces
7:43
PCA (video 1): Motivation
Marc Deisenroth
PCA (video 1): Motivation
1:09
PCA (video 3): Optimal Coordinates
Marc Deisenroth
PCA (video 3): Optimal Coordinates
5:30
Statistics (video 3): Variances, Part 1/2
Marc Deisenroth
Statistics (video 3): Variances, Part 1/2
4:55
PCA (video 6): Summary
Marc Deisenroth
PCA (video 6): Summary
4:08
Projections (video 6): Outro
Marc Deisenroth
Projections (video 6): Outro
0:33
PCA (video 7): PCA in High Dimensions
Marc Deisenroth
PCA (video 7): PCA in High Dimensions
5:49
PCA (video 2): Setting
Marc Deisenroth
PCA (video 2): Setting
7:46
Inner Products (video 6): Angles and Orthogonality
Marc Deisenroth
Inner Products (video 6): Angles and Orthogonality
5:42
ML Tutorial: Does Identifying with AI Affect Human Society? (Joanna Bryson)
Marc Deisenroth
ML Tutorial: Does Identifying with AI Affect Human Society? (Joanna Bryson)
52:20
ML Tutorial: Bayesian Nonparametrics and Priors over Functions (Carl Henrik Ek)
Marc Deisenroth
ML Tutorial: Bayesian Nonparametrics and Priors over Functions (Carl Henrik Ek)
1:46:33
ML Tutorial: Modern Reinforcement Learning and Video Games (Marc Bellemare)
Marc Deisenroth
ML Tutorial: Modern Reinforcement Learning and Video Games (Marc Bellemare)
1:42:56
ML Tutorial: Factor Graphs, Belief Propagation and Variational Techniques (Lennart Svensson)
Marc Deisenroth
ML Tutorial: Factor Graphs, Belief Propagation and Variational Techniques (Lennart Svensson)
1:46:33
ML Tutorial: Probabilistic Dimensionality Reduction, Part 2/2 (Neil Lawrence)
Marc Deisenroth
ML Tutorial: Probabilistic Dimensionality Reduction, Part 2/2 (Neil Lawrence)
1:46:55
ML Tutorial: Probabilistic Dimensionality Reduction, Part 1/2 (Neil Lawrence)
Marc Deisenroth
ML Tutorial: Probabilistic Dimensionality Reduction, Part 1/2 (Neil Lawrence)
1:56:24
ML Tutorial: Bayesian Machine Learning (Zoubin Ghahramani)
Marc Deisenroth
ML Tutorial: Bayesian Machine Learning (Zoubin Ghahramani)
2:01:18
ML Tutorial: Modern AI via Deep Learning (Ali Eslami)
Marc Deisenroth
ML Tutorial: Modern AI via Deep Learning (Ali Eslami)
1:43:53
ML Tutorial: Probabilistic Numerical Methods (Jon Cockayne)
Marc Deisenroth
ML Tutorial: Probabilistic Numerical Methods (Jon Cockayne)
1:47:03
ML Tutorial: Bayesian Optimization (Cedric Archambeau)
Marc Deisenroth
ML Tutorial: Bayesian Optimization (Cedric Archambeau)
1:38:54
ML Tutorial: Gaussian Processes (Richard Turner)
Marc Deisenroth
ML Tutorial: Gaussian Processes (Richard Turner)
1:53:32
ML Tutorial: Adversarial and Competitive Methods in Machine Learning (Amos Storkey)
Marc Deisenroth
ML Tutorial: Adversarial and Competitive Methods in Machine Learning (Amos Storkey)
1:44:45