MIT Computational Psycholinguistics Laboratory
A generative model for unsupervised word segmentation
17:19
MIT Computational Psycholinguistics Laboratory
A bigram version of the generative model for unsupervised word segmentation
3:21
MIT Computational Psycholinguistics Laboratory
Transition probabilities as a cue to unsupervised word segmentation
5:27
MIT Computational Psycholinguistics Laboratory
The earliest lexicon acquisition as unsupervised word segmentation
6:43
MIT Computational Psycholinguistics Laboratory
Gibbs sampling
15:05
MIT Computational Psycholinguistics Laboratory
Conjugacy
11:07
MIT Computational Psycholinguistics Laboratory
First Language Acquisition as Unsupervised Learning
6:30
MIT Computational Psycholinguistics Laboratory
Unsupervised learning of vowel categories
12:10
MIT Computational Psycholinguistics Laboratory
Noisy-channel deletions and insertions
3:47
MIT Computational Psycholinguistics Laboratory
Noisy channel analysis
19:35
MIT Computational Psycholinguistics Laboratory
Structural forgetting
17:10
MIT Computational Psycholinguistics Laboratory
Noisy-channel exchanges
13:21
MIT Computational Psycholinguistics Laboratory
Simple question answering
5:30
MIT Computational Psycholinguistics Laboratory
Accounting for local coherence effects, part 2
3:23
MIT Computational Psycholinguistics Laboratory
Noisy channel models
22:10
MIT Computational Psycholinguistics Laboratory
Accounting for local coherence effects, part 1
6:55
MIT Computational Psycholinguistics Laboratory
Surprisal and local coherence effects
14:34
MIT Computational Psycholinguistics Laboratory
Language comprehension and rational analysis
8:53
MIT Computational Psycholinguistics Laboratory
Island constraints
10:01
MIT Computational Psycholinguistics Laboratory
Filler–Gap Dependencies
19:39
MIT Computational Psycholinguistics Laboratory
Targeted syntactic evaluation in SyntaxGym
5:44
MIT Computational Psycholinguistics Laboratory
The Transformer model architecture
20:07
MIT Computational Psycholinguistics Laboratory
Interacting with GPT-2
5:53
MIT Computational Psycholinguistics Laboratory
Targeted evaluation and neural circuits
7:39
MIT Computational Psycholinguistics Laboratory
NP/Z garden-pathing
16:14
MIT Computational Psycholinguistics Laboratory
Subordination
11:47
MIT Computational Psycholinguistics Laboratory
Neural generalization on trees
12:25
MIT Computational Psycholinguistics Laboratory
Incremental tree generation with action sequences
10:02
MIT Computational Psycholinguistics Laboratory
Colorless green RNNs
5:28
MIT Computational Psycholinguistics Laboratory
Psycholinguistics of Subject–Verb Agreement
9:52
MIT Computational Psycholinguistics Laboratory
Subject–Verb agreement in neural language models
11:52
MIT Computational Psycholinguistics Laboratory
Explainability
5:38
MIT Computational Psycholinguistics Laboratory
Learning the "counting language"
8:50
MIT Computational Psycholinguistics Laboratory
GRUs and LSTMs
11:20
MIT Computational Psycholinguistics Laboratory
Simple Recurrent Networks
13:20
MIT Computational Psycholinguistics Laboratory
The neural n-gram model
12:12
MIT Computational Psycholinguistics Laboratory
Introduction to neural networks
23:28
MIT Computational Psycholinguistics Laboratory
Recap of binomials and logistic regression
10:28
MIT Computational Psycholinguistics Laboratory
Using n-gram statistics to study binomials
3:36
MIT Computational Psycholinguistics Laboratory
Idiosyncrasy and hierarchical models
22:38
MIT Computational Psycholinguistics Laboratory
Logistic regression
17:12
MIT Computational Psycholinguistics Laboratory
Binomial ordering preferences
19:31
MIT Computational Psycholinguistics Laboratory
The Perceptual Magnet effect: a Bayesian account
27:18
MIT Computational Psycholinguistics Laboratory
Bayes Nets
25:32
MIT Computational Psycholinguistics Laboratory
Human syntactic processing and surprisal: garden pathing
22:37
MIT Computational Psycholinguistics Laboratory
Probabilistic context-free grammars and the probabilistic Earley algorithm
29:44
MIT Computational Psycholinguistics Laboratory
Syntactic ambiguity and interpretation preferences
13:05
MIT Computational Psycholinguistics Laboratory
Syntactic corpus annotation and the Penn Treebank
17:43
MIT Computational Psycholinguistics Laboratory
Surprisal as a measure of linguistic expectation
6:14
MIT Computational Psycholinguistics Laboratory
Unbounded dependency constructions, part 3
5:10
MIT Computational Psycholinguistics Laboratory
Unbounded dependency constructions, part 2
12:06
MIT Computational Psycholinguistics Laboratory
Unbounded dependency constructions, part 1
15:11
MIT Computational Psycholinguistics Laboratory
Context-free grammars, part 2
20:18
MIT Computational Psycholinguistics Laboratory
Context-free grammars, part 1
9:47
MIT Computational Psycholinguistics Laboratory
Context-free grammars, part 3
5:46
MIT Computational Psycholinguistics Laboratory
Multiple center embedding, the pumping lemma, and limitations of finite-state automata
25:14
MIT Computational Psycholinguistics Laboratory
Finite-state transducers
4:19
MIT Computational Psycholinguistics Laboratory
Introduction to psycholinguistic methods, part 3: reading
26:28
MIT Computational Psycholinguistics Laboratory
Introduction to psycholinguistic methods, part 4: neural methods
13:19
MIT Computational Psycholinguistics Laboratory
Introduction to psycholinguistic methods, part 2: the visual world paradigm
10:42
MIT Computational Psycholinguistics Laboratory
Introduction to psycholinguistic methods, part 1
15:19
MIT Computational Psycholinguistics Laboratory
Finite-state models, regular languages, English syntax, and strong vs. weak generative capacity
14:14
MIT Computational Psycholinguistics Laboratory
Introductory language models, part II
42:18
MIT Computational Psycholinguistics Laboratory
Regular expressions and their relation with finite-state models
5:53
MIT Computational Psycholinguistics Laboratory
Introductory language models, part 1
25:40
MIT Computational Psycholinguistics Laboratory
Speech Perception and Rational Analysis
37:25
MIT Computational Psycholinguistics Laboratory
Regular expressions, phonotactics, and finite-state automata, part 3
13:59
MIT Computational Psycholinguistics Laboratory
Regular expressions, phonotactics, and finite-state automata, part 2
12:05
MIT Computational Psycholinguistics Laboratory
Regular expressions, phonotactics, and finite-state automata, part 1
7:16
MIT Computational Psycholinguistics Laboratory
Introductory Probability Theory
30:58