Exercise 5 - Company Data Base
Sunil Gl
Exercise 5 - Company Data Base
17:15
Module-1 Strong Entity & Weak Entity
Sunil Gl
Module-1 Strong Entity & Weak Entity
4:17
Charactristics of Data Base Approach
Sunil Gl
Charactristics of Data Base Approach
7:33
Exercise-02 ORDER Data Base
Sunil Gl
Exercise-02 ORDER Data Base
15:29
EXercise 2 -ORDER Data Base
Sunil Gl
EXercise 2 -ORDER Data Base
1:40
Module-1 DBMS Introduction
Sunil Gl
Module-1 DBMS Introduction
6:14
16 November 2021
Sunil Gl
16 November 2021
4:18
Module 5 - Social Network Analysis
Sunil Gl
Module 5 - Social Network Analysis
16:53
Module 5 - Web Mining
Sunil Gl
Module 5 - Web Mining
15:49
Program 5 Intermediate Code Generation in Three Address Form
Sunil Gl
Program 5 Intermediate Code Generation in Three Address Form
41:55
06  Program 4 Shift Reduce Parsing Technique
Sunil Gl
06 Program 4 Shift Reduce Parsing Technique
26:20
Program -3  Predictive /LL(1) Parsing Table
Sunil Gl
Program -3 Predictive /LL(1) Parsing Table
32:36
Module-05 Syntax Directed Translation
Sunil Gl
Module-05 Syntax Directed Translation
35:14
Module-5 Intermediate Code Generation
Sunil Gl
Module-5 Intermediate Code Generation
22:58
Module -5  Evaluation Order of SDD
Sunil Gl
Module -5 Evaluation Order of SDD
36:36
Module -5 Text Mining
Sunil Gl
Module -5 Text Mining
24:13
Module-4 Cluster Analysis
Sunil Gl
Module-4 Cluster Analysis
29:38
Module-4 Regression
Sunil Gl
Module-4 Regression
27:48
Module-4  Decision Tree
Sunil Gl
Module-4 Decision Tree
23:57
Module -3  Data Mining
Sunil Gl
Module -3 Data Mining
36:49
Module-3  Data Warehousing
Sunil Gl
Module-3 Data Warehousing
25:57
Module 3 Business Intelligence Concepts and Applications
Sunil Gl
Module 3 Business Intelligence Concepts and Applications
39:49
Module -2 Managing Hadoop with Apache Ambari
Sunil Gl
Module -2 Managing Hadoop with Apache Ambari
23:46
Module-2 Hadoop Yarn Applications
Sunil Gl
Module-2 Hadoop Yarn Applications
16:49
Module 2  Essential Hadoop Tools
Sunil Gl
Module 2 Essential Hadoop Tools
33:44
Module -1 Hadoop Distributed File System
Sunil Gl
Module -1 Hadoop Distributed File System
29:16
Module -1 Hadoop for Big Data
Sunil Gl
Module -1 Hadoop for Big Data
29:06
Module - 2 Hadoop for Big Data
Sunil Gl
Module - 2 Hadoop for Big Data
29:06
Module -1 Introductions to Big Data
Sunil Gl
Module -1 Introductions to Big Data
32:53
Module - 3  Left Recursion
Sunil Gl
Module - 3 Left Recursion
36:22
Module-3   Parsing Techniques
Sunil Gl
Module-3 Parsing Techniques
33:37
Module-3 Eliminating Ambiguity of CFG
Sunil Gl
Module-3 Eliminating Ambiguity of CFG
37:52
Module -3 Parse Tree
Sunil Gl
Module -3 Parse Tree
19:02
Module-2 Input Buffering
Sunil Gl
Module-2 Input Buffering
40:55
Module-2 Lexical Analysis
Sunil Gl
Module-2 Lexical Analysis
33:50
Module -2 Grouping of Phases into Passes
Sunil Gl
Module -2 Grouping of Phases into Passes
33:56
Module-2 Compilers & Language Processors
Sunil Gl
Module-2 Compilers & Language Processors
38:12
Module-1 Pass-2  of the Assemble Algorithm
Sunil Gl
Module-1 Pass-2 of the Assemble Algorithm
30:24
Module-1 Pass-1 of the Assembler Algorithm
Sunil Gl
Module-1 Pass-1 of the Assembler Algorithm
29:36
Module-1 Data Structures used in Design of Assemblers
Sunil Gl
Module-1 Data Structures used in Design of Assemblers
23:13
Module-1 Assemblers
Sunil Gl
Module-1 Assemblers
38:14
12. STRING CONSTANT
Sunil Gl
12. STRING CONSTANT
11:43
11.  ESCAPE SEQUENCE
Sunil Gl
11. ESCAPE SEQUENCE
7:35
10.  CHARACTER CONSTANT
Sunil Gl
10. CHARACTER CONSTANT
6:53
09. FLOAT CONSTANT
Sunil Gl
09. FLOAT CONSTANT
10:11
08. ENUMERATED  CONSTANTS
Sunil Gl
08. ENUMERATED CONSTANTS
8:00
07. RANGE SIGNED
Sunil Gl
07. RANGE SIGNED
14:30
06 RANGE UNSIGNED
Sunil Gl
06 RANGE UNSIGNED
12:40
05. CONSTANTS
Sunil Gl
05. CONSTANTS
4:04
04 IDENTIFIERS
Sunil Gl
04 IDENTIFIERS
10:19
03.  KEYWORDS
Sunil Gl
03. KEYWORDS
9:31
02. TOKENS
Sunil Gl
02. TOKENS
5:55
01.  ALPHABETS
Sunil Gl
01. ALPHABETS
12:11
14. Reinforcement Learning and Q Learning
Sunil Gl
14. Reinforcement Learning and Q Learning
26:55
P04  ANN (Program 4)
Sunil Gl
P04 ANN (Program 4)
31:04
13   K Mean Problem
Sunil Gl
13 K Mean Problem
10:20
P06   Naive Bayse (Lab Program 06)
Sunil Gl
P06 Naive Bayse (Lab Program 06)
9:37
P06 Naive Bayse Classifier (Program06 theory)
Sunil Gl
P06 Naive Bayse Classifier (Program06 theory)
11:48
06  Naive Bayes Classifier ( Program 06 Theory)
Sunil Gl
06 Naive Bayes Classifier ( Program 06 Theory)
9:37
P05&07 Naive Bayse  Classiifer (Program 05 and 07)
Sunil Gl
P05&07 Naive Bayse Classiifer (Program 05 and 07)
41:48
P02 Candidate Elimination Algorithm (Program 2)
Sunil Gl
P02 Candidate Elimination Algorithm (Program 2)
10:54
P02 Candidate elimination algorithm Theory(program 2)
Sunil Gl
P02 Candidate elimination algorithm Theory(program 2)
11:44
P10. Locally Weighted Regression(Program 10)
Sunil Gl
P10. Locally Weighted Regression(Program 10)
39:42
Regression and Locally Weighted Regression
Sunil Gl
Regression and Locally Weighted Regression
24:46
10. K Nearest Neighbour Classifier
Sunil Gl
10. K Nearest Neighbour Classifier
21:16
P09   K Nearest Neighbour algorithm( Program 09)
Sunil Gl
P09 K Nearest Neighbour algorithm( Program 09)
29:27
P08  K Mean & EM Algorithm (Program 08)
Sunil Gl
P08 K Mean & EM Algorithm (Program 08)
12:57
P08  K Mean & Gaussian Mixture  (Program 8)
Sunil Gl
P08 K Mean & Gaussian Mixture (Program 8)
17:24
P08  K Mean & Gaussian Mixture (Program 08 theory)
Sunil Gl
P08 K Mean & Gaussian Mixture (Program 08 theory)
17:24
P09  K Mean & EM Algorithm Program
Sunil Gl
P09 K Mean & EM Algorithm Program
12:57
10  K Mean & Gaussian Mixture
Sunil Gl
10 K Mean & Gaussian Mixture
17:24
MODULE 1 ALPHABETS
Sunil Gl
MODULE 1 ALPHABETS
12:11
C CH 01 15 ESCAPE SEQUENCE
Sunil Gl
C CH 01 15 ESCAPE SEQUENCE
7:35
P01  Find S algorithm
Sunil Gl
P01 Find S algorithm
17:51
PO3  Decision Tree
Sunil Gl
PO3 Decision Tree
40:58
03  Anaconda Framework
Sunil Gl
03 Anaconda Framework
32:10
09  ANN Introduction
Sunil Gl
09 ANN Introduction
30:07
08 Decision tree boolean  function problem
Sunil Gl
08 Decision tree boolean function problem
22:56
07  Decision tree problem
Sunil Gl
07 Decision tree problem
45:55
05  Decision tree introduction and appropriate problems for Decision Tree
Sunil Gl
05 Decision tree introduction and appropriate problems for Decision Tree
36:34
04 Decision tree Introduction
Sunil Gl
04 Decision tree Introduction
36:34
03  Anaconda Framework
Sunil Gl
03 Anaconda Framework
32:10
02  ML Introduction
Sunil Gl
02 ML Introduction
33:22
01  ML Introduction
Sunil Gl
01 ML Introduction
39:35