A Data Odyssey
Applying LIME with Python | Local & Global Interpretations
9:42
A Data Odyssey
An introduction to LIME for local interpretations | Intuition and Algorithm |
8:36
A Data Odyssey
Friedman's H-statistic Python Tutorial | Artemis Package
8:20
A Data Odyssey
Friedman's H-statistic for Analysing Interactions | Maths and Intuition
15:06
A Data Odyssey
Accumulated Local Effect Plots (ALEs) | Explanation & Python Code
13:44
A Data Odyssey
PDPs and ICE Plots | Python Code | scikit-learn Package
12:57
A Data Odyssey
Partial Dependence (PDPs) and Individual Conditional Expectation (ICE) Plots | Intuition and Math
11:55
A Data Odyssey
Permutation Feature Importance from Scratch | Explanation & Python Code
13:10
A Data Odyssey
Model Agnostic Methods for XAI | Global v.s. Local | Permutation v.s. Surrogate Models
8:38
A Data Odyssey
8 Plots for Explaining Linear Regression | Residuals, Weight, Effect & SHAP
13:39
A Data Odyssey
Feature Selection using Hierarchical Clustering | Python Tutorial
15:55
A Data Odyssey
8 Characteristics of a Good Machine Learning Feature | Predictive, Variety, Interpretability, Ethics
16:16
A Data Odyssey
Interpretable Feature Engineering | How to Build Intuitive Machine Learning Features
15:07
A Data Odyssey
Modelling Non-linear Relationships with Regression
9:32
A Data Odyssey
Explaining Machine Learning to a Non-technical Audience
13:23
A Data Odyssey
Get more out of Explainable AI (XAI): 10 Tips
13:47
A Data Odyssey
The 6 Benefits of Explainable AI (XAI) | Improve accuracy, decrease harm and tell better stories
15:05
A Data Odyssey
Introduction to Explainable AI (XAI) | Interpretable models, agnostic methods, counterfactuals
11:51
A Data Odyssey
Data Science vs Science | Differences & Bridging the Gap
11:09
A Data Odyssey
About the Channel and my Background | ML, XAI and Remote Sensing
3:32
A Data Odyssey
Introduction to Algorithm Fairness | Causes, Measuring & Preventing Unfairness in Machine Learning
5:46
A Data Odyssey
Correcting Unfairness in Machine Learning | Pre-processing, In-processing, Post-processing
9:01
A Data Odyssey
Definitions of Fairness in Machine Learning | Equal Opportunity, Equalized Odds & Disparate Impact
10:32
A Data Odyssey
Exploratory Fairness Analysis | Quantifying Unfairness in Data
7:47
A Data Odyssey
5 Reasons for Unfair Models | Proxy Variables, Unbalanced Samples & Negative Feedback Loops
10:09
A Data Odyssey
Feature Engineering with Image Data | Aims, Techniques & Limitations
9:03
A Data Odyssey
Image Augmentation for Deep Learning | Benefits, Techniques & Best Practices
9:36
A Data Odyssey
Interpretable vs Explainable Machine Learning
7:07
A Data Odyssey
5 ways to use a Seaborn Heatmap
3:02
A Data Odyssey
Data Exploration with PCA
5:11