CSU CBE 330
Help with HW 1
9:33
CSU CBE 330
Lecture 13 05 Hyperbolic PDEs
5:34
CSU CBE 330
Lecture 13 03 Elliptic PDEs PRADI
10:15
CSU CBE 330
Lecture 13 04 Parabolic PDEs
5:59
CSU CBE 330
Lecture 13 02 Elliptic PDEs - Finite difference method
8:26
CSU CBE 330
Lecture 13 01 - Partial Differential Equations
8:23
CSU CBE 330
Lecture 12 03 - Matrix Eigenvalue Problems - QR factorization
4:42
CSU CBE 330
Lecture 12 02 - Matrix Eigenvalue Problems - Tridiagonalization of symmetric matrices
6:15
CSU CBE 330
Lecture 12 01 - Matrix Eigenvalue Problems
7:49
CSU CBE 330
CBE 330 11 05 - Colocation
7:40
CSU CBE 330
CBE 330 11 04 - Solving BVPs using MATLAB BVP4c
5:05
CSU CBE 330
CBE 330 11 03 - Finite-difference method
5:44
CSU CBE 330
CBE 330 11 02 - The Shooting method
8:26
CSU CBE 330
CBE 330 11 01- Intro to BVPs
10:36
CSU CBE 330
CBE 330 09 09 - Comparing Matlab ODE solvers
7:16
CSU CBE 330
CBE 330 09 08 - ODE solvers in Matlab
12:29
CSU CBE 330
CBE 330 09 07 - IVPs as systems of ODEs and higher-order ODES
9:52
CSU CBE 330
CBE 330 09 06 - Predictor-corrector methods
5:34
CSU CBE 330
CBE 330 09 05 - Multistep methods
6:08
CSU CBE 330
CBE 330 09 04 - higher-order RK methods
6:33
CSU CBE 330
CBE 330 09 03 - Runge-Kutta methods
7:21
CSU CBE 330
CBE 330 09 02 - Euler's method and Taylor methods
4:23
CSU CBE 330
CBE 330 09 01 - Introduction to initial-value problems
6:22
CSU CBE 330
CBE 330 08 06 - Gaussian Quadrature
10:01
CSU CBE 330
CBE 330 08 05 - Romberg integration
8:33
CSU CBE 330
CBE 330 08 04 - Numerical integration
6:14
CSU CBE 330
CBE 330 08 03 - Richardson's extrapolation
3:25
CSU CBE 330
CBE 330 08 02 - Finite difference approximations of derivatives
3:53
CSU CBE 330
CBE 330 08 01 - Two-point finite difference methods
7:52
CSU CBE 330
CBE 330 07 06 - Comparison of methods
6:11
CSU CBE 330
CBE 330 07 05 - FFT for Discrete Fourier Transforms
8:43
CSU CBE 330
CBE 330 07 04 - trigonometric polynomials
4:15
CSU CBE 330
CBE 330 07 03 - Using MATLAB to calculate splines, Examples
5:54
CSU CBE 330
CBE 330 07 02 - Cubic splines
7:07
CSU CBE 330
CBE 330 07 01 - Introduction to splines
6:16
CSU CBE 330
CBE 330 06 08 - Newton divided-difference polynomials
6:49
CSU CBE 330
CBE 330 06 07 - Lagrange interpolating polynomial
7:01
CSU CBE 330
CBE 330 06 06 - Non-linear and multiple least-squares regressions
7:33
CSU CBE 330
CBE 330 06 05 - R-squared and adjusted R-squared
10:50
CSU CBE 330
CBE 330 06 04 - linear least-squares regression for polynomials
4:44
CSU CBE 330
CBE 330 06 03 - Linear Least Square Regression examples
5:17
CSU CBE 330
CBE 330 06 02 - Simple linear regression
7:24
CSU CBE 330
CBE 330 06 01 - curve fitting introduction
4:01
CSU CBE 330
CBE 330 04 08 - Scaling, Dimensionless numbers, and de-dimensionalization
12:30
CSU CBE 330
CBE 330 04 07 - Introduction to Dimensional Analysis
13:20
CSU CBE 330
CBE 330 04 06 - Introduction to empirical models
7:17
CSU CBE 330
CBE 330 04 05 - Solving non-linear systems, summary of Methods Chapter 4
9:39
CSU CBE 330
CBE 330 04 04 - Indirect methods convergence and ill conditioning
4:16
CSU CBE 330
CBE 330 04 03 - Indirect methods for solving linear systems - Jacobi and Gauss-Seidel
13:10
CSU CBE 330
CBE 330 04 02 - LU factorization techniques for solving linear systems
6:36
CSU CBE 330
CBE 330 04 01 - Solving systems of equations - Gauss Elmination
8:01
CSU CBE 330
CBE 330 03 10 - Boundary conditions and summary of balance equations
5:48
CSU CBE 330
CBE 330 03 09 - Rate equations and equilibrium equations
9:39
CSU CBE 330
CBE 330 03 08 - component and energy balances
8:36
CSU CBE 330
CBE 330 03 07 - the Cauchy momentum equation
4:18
CSU CBE 330
CBE 330 03 06 - General Balance equation and Continuity Equation
5:59
CSU CBE 330
CBE 330 03 05 - General balance equation for Eulerian control volume
7:55
CSU CBE 330
CBE 330 03 04 - Introduction to microscopic balance equations
6:24
CSU CBE 330
CBE 330 03 03 - Root finding by MATLAB fzero and summary
2:50
CSU CBE 330
CBE 330 03 02 - Root finding by open methods
6:54
CSU CBE 330
CBE 330 03 01 - Root finding by bracketing method
8:23
CSU CBE 330
CBE 330 02 10 - Theoretical modeling - Model solutions
10:14
CSU CBE 330
CBE 330 02 09 - Theoretical modeling - Formulating the model
12:09
CSU CBE 330
CBE 330 02 08 - Theoretical modeling - Example
2:25
CSU CBE 330
CBE 330 02 07 - Theoretical Modeling step 1 - Defining the problem
9:40
CSU CBE 330
CBE 330 02 06 - MATLAB: Symbolic Laplace transforms and solving ODEs
5:15
CSU CBE 330
CBE 330 02 05 - MATLAB: Symbolic differentiation and integration
6:18
CSU CBE 330
CBE 330 02 04 - MATLAB: Extracting elements from vectors and matrices
3:19
CSU CBE 330
CBE 330 02 03 - MATLAB: Precision; vector and matrix assignments
6:31
CSU CBE 330
CBE 330 02 02 - Format and rounding in MATLAB
4:46
CSU CBE 330
CBE 330 02 01 - Matlab Review
3:34
CSU CBE 330
CBE 330 01 09 - Errors and Summary of Methods Ch. 1
3:53
CSU CBE 330
CBE 330 01 08 - Review of some matrix concepts
8:58
CSU CBE 330
CBE 330 01 07 - Analytical methods for ODEs
5:48
CSU CBE 330
CBE 330 01 06 - Solution difficulty and summary
5:20
CSU CBE 330
CBE 330 01 05 - Comparing solutions, Examples
5:25
CSU CBE 330
CBE 330 01 04 Model solutions and the Taylor series expansion
5:30
CSU CBE 330
CBE 330 01 03 - Model types
12:26
CSU CBE 330
CBE 330 01 02 - quantities in mathematical models
15:01
CSU CBE 330
CBE 330 01 01 - Course intro and objectives
6:11