@element54_

I watched this series 7 years ago before I graduated high school. Since then I have graduated with a degree with one of my majors being physics, including 3 QM courses. Thank you and good luck to everyone else who is here to learn.

@zay.405

I've been to 3 universities in the past 15 minutes: MIT, Harvard, and Stanford. You could say I'm something of a genius.

@AidenScarborough

I am glad that we can get these advanced educational courses for pretty much free , a good way to identify the smart people and the ones that were unlucky or simply lost during high school

@metalhead375

Incredible class... wish I could be a part of it. I've watched several lecture series on QM and none of them were as lively as this professor and audience.

@jamiecfthedrummer

Heisenberg and Schrodinger are speeding down the highway when a state 
cop pulls them over. The cop walks up to the window and asks Heisenberg,
 "Do you know how fast you were going?"
Heisenberg replies, "No, but I knew where I was."
The cop says, "You were going over 90 miles per hour!"
To which Heisenberg replies, "Fine. Now we're lost."
Thinking this answer is a little strange, the cop decides to investigate
 the vehicle. He begins by opening the trunk. Shocked by what he finds, 
he shouts, "You have a dead cat in here!"
Schrodinger answers, "Well I do now!"

@mttlsa686

I'm a 40 year old man, passionate about the understanding of how the universe works and when he said "except you're all wrong" i've got emotional for a moment because it was a kind of illumination giving me an instantaneous sense of awareness to the existence.

@physicsguy877

I'm a physics graduate student watching for kicks.  He really does an impeccable job of introducing each concept and showing how it is forced by experiment.  The lecture actually made me rethink the arguments I was taught in undergrad and sharpen them whereas before I didn't think about them as much.  

For example, when he introduces the boxes, he does not say that they individually show QM is fundamentally random.  A lesser teacher would say, "hey look, each time I send a soft electron through a color box it comes out 50/50 black or white, so that shows QM is fundamentally random", but that'd be a bad argument.  A student could just say that half of soft electrons in the world are black and half are white, and you just don't know which ahead of time.  It would be impossible for the teacher to adequately answer this student's complaint, because there's no operational way to tell which is right by measuring color.  Fundamental randomness in color and randomness due to ignorance both result in a 50/50 split.  By introducing the sequence of three boxes at 20:00 he circumvents this argument by instead examining which electrons flip color and which ones don't.  If this were not truly random, then we could tell which electrons flip by some additional property, and Bells' inequality shows that no such property exists.  Furthermore, this shows that electrons cannot have both definite color and definite hardness, but I just wanted to focus on the randomness aspect because it's often taught poorly in my experience.  People don't often present scenarios that force randomness, they merely assert that things are random.

@red-baitingswine8816

25:25:  Tells us that in the interaction between the boxes and electron, changes occur, that have not yet been detected.

@lecturesbywalterlewin.they9259

Prof Adams is a great Lecturer! Very enthusiastic, very knowledgeable, with a sense of humor.

@yashaswipandey2134

00:00 Learn quantum mechanics with intuition through problem-solving
05:42 Choose the right textbook for you
16:41 Color and hardness are uncorrelated properties.
22:21 Physical processes are intrinsically unpredictable and random.
32:53 Electrons behave like cheese
38:40 Electrons follow 50-50 probability of hardness or softness
48:46 Electrons come out of the color box white 100% of the time.
53:20 Electrons generated by rubbing cat against balloon and sent into color box.
1:03:44 The behavior of electrons changes with the presence of mirrors or color boxes.
1:07:49 Electrons have a way of moving unlike anything we're used to thinking about.
Crafted by Merlin AI.

@Tomas.Carminatti

00:00 🎓 El profesor Allan Adams da la bienvenida al curso de mecánica cuántica (804) de MIT para la primavera de 2013, destacando su entusiasmo por la materia y presentando al equipo docente.
02:51 🧠 El objetivo del curso es que los estudiantes no solo realicen cálculos en mecánica cuántica, sino que desarrollen intuición para entender los fenómenos cuánticos.
05:42 📚 Se recomiendan varios libros de texto para el curso, destacando la importancia de elegir según el enfoque (mecánica de ondas o mecánica matricial) y las preferencias del estudiante.
08:05 ⏰ La política de tardanzas es estricta, pero se permitirá la eliminación de la nota más baja en las tareas para contrarrestar eventos imprevistos.
13:56 📦 Descripción de cajas (color y dureza) para medir propiedades de electrones, destacando la repetibilidad de las mediciones y su independencia.
19:55 🔗 La correlación entre el color y la dureza de los electrones se demuestra mediante experimentos, mostrando que conocer una propiedad no predice la otra.
21:46 🤔 La expectativa natural sería que todos los electrones blancos salieran blancos del segundo cuadro, pero sorprendentemente, el 50% sale negro.
23:11 🧐 Aunque un electrón se mide como blanco inicialmente, al medirlo nuevamente, puede salir blanco o negro, indicando una naturaleza no determinista y aleatoria.
25:05 🎲 Existe una intrínseca imprevisibilidad y no determinismo en los procesos físicos observados en el laboratorio, revelando que la probabilidad es forzada por las observaciones.
27:54 📦 Es imposible construir una caja que indique tanto el color como la dureza de un electrón simultáneamente debido al principio de incertidumbre.
30:21 🔄 La propiedad fundamental del mundo cuántico es que ciertas propiedades observables son inherentemente incompatibles entre sí, como la dureza y el color simultáneos.
33:41 🔄 Presentación de un dispositivo experimental más complejo con cajas de dureza y espejos, y la introducción de un principio de invariancia: cambiar la dirección no altera las propiedades medidas.
37:28 🤔 Predicción de resultados en un experimento donde electrones blancos se envían a través de un dispositivo con espejos y cajas de dureza, resultando en una probabilidad del 50% para la dureza al final.
43:11 📊 La clase aborda una serie de experimentos relacionados con la superposición cuántica.
45:31 🎓 Experimento: Electrones duros se envían a una caja de dureza y luego a una caja de color, prediciendo una salida 50-50.
46:56 🔍 Experimento complicado: Electrones blancos se envían a una caja de dureza, con una salida sorprendente del 100% blanco y 0% negro.
57:10 🧐 Se introduce una barrera móvil en el camino suave del experimento anterior, reduciendo la salida en un 50%, pero sorprendentemente, no todos los electrones salen blancos, sino 50-50.
01:04:18 🤔 En experimentos cuánticos más complejos, como con cajas de colores en lugar de espejos, los resultados pueden variar, y es crucial abordarlos caso por caso.
01:05:44 🌈 Una "caja de color" en la mecánica cuántica no se verifica directamente, pero su propiedad de ser "blanca" se deduce al observar el electrón que sale de ella.
01:06:14 🇫🇷 Experimentos similares han sido realizados por Alain Aspect, un físico francés, demostrando que la presencia del experimentador no afecta los resultados.
01:06:43 🤯 Al analizar un electrón en una superposición de caminos, surge la pregunta de qué ruta tomó, y ninguna opción (duro, suave, ambos, ninguno) parece adecuada.
01:10:36 🤔 La superposición cuántica plantea un dilema: los electrones no siguen las categorías clásicas de camino duro o suave, ambos o ninguno, desafiando la intuición clásica.
01:11:34 🔄 La superposición cuántica sugiere que los electrones adoptan un modo de ser único y no convencional, llevando a la necesidad de un nuevo lenguaje, la mecánica cuántica.
01:13:28 🔄 La superposición implica que un electrón no es ni duro ni suave, sino una combinación superpuesta de ambas, desafiando la idea de una propiedad definida antes de medir.

@sophbells

These people are so lucky to have a professor like this. My professors never would have said "email me and I'll send you some papers on that question." Lucky as hell

@ashimr

Class begins at 10:30.

@fabiorestrepo98

I just learned Dr. Adams was born in my same city (Bogotá, Colombia). What a pleasant surprise, professor :)

@Kornflayx89

I want to find something in my life that I am as passionate about as this teacher is about Quantum Physics

@Yomamajuci3d

He has such a way of keeping you engaged in the lecture

@jaimemenapadilla

This guy fucking loves what he knows, and he wants you to love it too, which is incredibly refreshing.

@michaeldavis812

MIT, thank you for having courses such as "Quantum Physics" uploaded to YouTube for people to learn. As a person that has autism, it is much easier for me to learn in a relaxing environment where there are little to no distractions, and at the pace I want. Keep up the great work!

@mercster

I'm almost as amazed at MIT's complex blackboard system than the quantum superposition of subatomic molecules.

@guisantanna8330

I don't know about you, but this lecture was like a movie to me. A movie that takes you along a drama and teaches you a lesson you didn't know before. The end was such a confusing and embarrassing poetry, but beautiful at the same time. That's reality.