Loading...
「ツール」は右上に移動しました。
利用したサーバー: wtserver3
2いいね 31回再生

Basic Data Analysis with R: Introduction to Statistics & Visualization

Dive into a detailed tutorial on performing data analysis and visualization in R using the popular Iris dataset. This video walks you through calculating basic statistics, grouping data by species, and creating stunning visualizations for exploratory data analysis (EDA). Perfect for beginners and intermediate R users looking to enhance their data analysis skills!

✅ What You’ll Learn:

Calculating the mean, standard deviation, and generating summary statistics.
Grouping data and calculating group means using tapply() and aggregate().
Visualizing data distributions with histograms and boxplots.
Creating scatterplots and a scatterplot matrix for variable relationships.
Why Watch This Video?
The Iris dataset is a classic starting point for learning data analysis. This tutorial covers essential techniques to help you master data exploration and visualization in RStudio. From basic statistics to advanced visualizations, you'll gain practical skills to apply in your own projects.

📊 Who Is This For?
Ideal for R beginners, data analysts, and students looking to perform exploratory data analysis (EDA) in R.

🔗 Topics Covered:

Basic statistics with mean(), sd(), and summary().
Grouped data analysis with tapply() and aggregate().
Visualizing distributions with hist() and boxplot().
Scatterplot analysis and scatterplot matrix using plot() and pairs().

---------------------------------------------------------------------------------
Code from Tutorial:
***
iris = iris

mean(iris$Sepal.Length)
sd(iris$Sepal.Length)

summary(iris)

tapply(iris$Sepal.Length, iris$Species, mean)

cars = mtcars
tapply(cars$mpg, cars$cyl, mean)

aggregate(. ~ Species, data = iris, mean)

aggregate(. ~ Species, data = iris, median)

hist(iris$Sepal.Length, main = 'Sepal Length Distribution', xlab = 'Length', col = 'lightblue')

boxplot(Sepal.Length ~ Species, data = iris, main = "Sepal Length by Species", col = 'lightblue')

plot(iris$Sepal.Length, iris$Sepal.Width, col = as.numeric(iris$Species), pch = 16)
pairs(iris[, 1:4], main = 'Scatterplot Matrix of Iris', col = iris$Species)

***

#Python #Programming #Coding #LearnPython #PythonTips #CodeWithMe #ProgrammingForBeginners #TechTips #PythonTutorial #CodingTutorial #ProgrammingTips #LearnToCode #TechLearning #CodingForBeginners #ProgrammingBasics #PythonForBeginners #EducationalContent #HowToCode #STEMEducation #QuickTutorial #CodingChallenge #CodingInterviewPrep #PythonInterview #BrainTeaser #ProblemSolving #TechChallenge #CodingPractice #PythonCode #PythonHacks #PythonStringManipulation #PythonProjects #ShortPythonTips #PythonProgrammingMadeEasy #SimplePythonSolutions #PythonicCode #TechTok #DataScience #PythonForData #DataAnalysis #TechTutorials #DeveloperLife #CodeLifestyle #FutureOfTech #ForYou #FYP #ViralVideo #TrendingNow #LearnOnTikTok #ShortTutorial #QuickTips #StepByStep #StringReversal #PalindromeCheck #CodingFun #ShortCodingTips #ProblemSolvingInPython #DailyCodingTips #OneMinuteTutorial
#PythonProgramming #LearnCoding #PythonForEveryone #ShortProgrammingTips #QuickCodeTutorial #CodeSnippet #PythonForReels #ProgrammingMadeSimple #HowToPython #TechReels #ProgrammingLife #CodingJourney #PythonDev #PythonCodeSnippet #TechForBeginners #CodeTutorials #LearnWithPython #PythonFun #PythonScripts #CodingBeginners #EasyPythonTips #BeginnerCoding #ProgrammingTutorials #ShortTechVideos #TechEducation #CodeForLife #PythonReels #QuickProgramming #TechSkills #CodeShorts #DailyCoding #PythonStringMethods #CodeMadeSimple #STEMForAll #PythonBeginnerTips #CodeSmart #ProgrammingShorts #HowToCodePython #EfficientPython #LearnFastCode #PythonSolutions #CodeMastery #CodeDaily #PythonBasics #ProgrammingStepByStep #BrainTeasersInPython #PythonChallenge #StringManipulationTips #PythonCodeExplained #TechTutorialForBeginners #DevReels #PythonQuickTips #ReelsForTech #PythonSkills #PythonProjectsShorts #DailyPythonShorts

コメント